Copied to
clipboard

G = C42.479C23order 128 = 27

340th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.479C23, C4.752+ 1+4, (C4×D8)⋊44C2, D47(C4○D4), C86D417C2, C8⋊D448C2, C4⋊C4.375D4, D46D412C2, D4⋊D449C2, D4⋊Q837C2, (C2×D4).325D4, C22⋊C4.58D4, C2.53(Q8○D8), D4.D424C2, C4⋊C8.112C22, C4⋊C4.422C23, C4.48(C8⋊C22), (C2×C4).522C24, (C2×C8).193C23, (C4×C8).228C22, C4.SD1621C2, C23.339(C2×D4), C4⋊Q8.157C22, (C4×D4).171C22, (C2×D8).141C22, (C2×D4).245C23, C4⋊D4.94C22, C22⋊C8.90C22, (C2×Q8).230C23, C2.158(D45D4), C2.D8.126C22, C22⋊Q8.93C22, D4⋊C4.76C22, C23.48D430C2, C23.36D425C2, (C22×C4).335C23, Q8⋊C4.16C22, (C2×SD16).61C22, C22.782(C22×D4), (C2×M4(2)).124C22, C4.247(C2×C4○D4), (C2×C4).615(C2×D4), C2.80(C2×C8⋊C22), (C2×C4⋊C4).674C22, (C2×C4○D4).220C22, SmallGroup(128,2062)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.479C23
C1C2C4C2×C4C22×C4C2×C4○D4D46D4 — C42.479C23
C1C2C2×C4 — C42.479C23
C1C22C4×D4 — C42.479C23
C1C2C2C2×C4 — C42.479C23

Generators and relations for C42.479C23
 G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=a2b2, ab=ba, cac-1=a-1, dad=ab2, eae=a-1b2, cbc-1=dbd=b-1, be=eb, dcd=bc, ece=a2b2c, ede=b2d >

Subgroups: 432 in 210 conjugacy classes, 88 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4×C8, C22⋊C8, D4⋊C4, D4⋊C4, Q8⋊C4, C4⋊C8, C2.D8, C2.D8, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4⋊Q8, C2×M4(2), C2×D8, C2×SD16, C2×C4○D4, C2×C4○D4, C23.36D4, C86D4, C4×D8, D4⋊D4, D4.D4, C8⋊D4, D4⋊Q8, C23.48D4, C4.SD16, D46D4, C42.479C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C8⋊C22, C22×D4, C2×C4○D4, 2+ 1+4, D45D4, C2×C8⋊C22, Q8○D8, C42.479C23

Character table of C42.479C23

 class 12A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I4J4K4L4M4N8A8B8C8D8E8F
 size 11114444822224444488888444488
ρ111111111111111111111111111111    trivial
ρ21111-1-1-1-1-11111-1-11-1-111-1111111-1-1    linear of order 2
ρ31111-1-1-11-1-111-11-1-1111-11-111-11-11-1    linear of order 2
ρ41111111-11-111-1-11-1-1-11-1-1-111-11-1-11    linear of order 2
ρ51111-1-1-111-111-1-1-1-11-1-1-1111-11-11-11    linear of order 2
ρ61111111-1-1-111-111-1-11-1-1-111-11-111-1    linear of order 2
ρ711111111-11111-1111-1-111-11-1-1-1-1-1-1    linear of order 2
ρ81111-1-1-1-1111111-11-11-11-1-11-1-1-1-111    linear of order 2
ρ91111-11-11-11111-1111-1-1-1-1-1-1111111    linear of order 2
ρ1011111-11-1111111-11-11-1-11-1-11111-1-1    linear of order 2
ρ1111111-1111-111-1-1-1-11-1-11-11-11-11-11-1    linear of order 2
ρ121111-11-1-1-1-111-111-1-11-1111-11-11-1-11    linear of order 2
ρ1311111-111-1-111-11-1-11111-1-1-1-11-11-11    linear of order 2
ρ141111-11-1-11-111-1-11-1-1-1111-1-1-11-111-1    linear of order 2
ρ151111-11-1111111111111-1-11-1-1-1-1-1-1-1    linear of order 2
ρ1611111-11-1-11111-1-11-1-11-111-1-1-1-1-111    linear of order 2
ρ172222020202-2-220-2-2-2000000000000    orthogonal lifted from D4
ρ1822220-20-202-2-2202-22000000000000    orthogonal lifted from D4
ρ1922220-2020-2-2-2-2022-2000000000000    orthogonal lifted from D4
ρ202222020-20-2-2-2-20-222000000000000    orthogonal lifted from D4
ρ212-22-2-2020002-20-2i0002i0000002i0-2i00    complex lifted from C4○D4
ρ222-22-220-20002-202i000-2i0000002i0-2i00    complex lifted from C4○D4
ρ232-22-220-20002-20-2i0002i000000-2i02i00    complex lifted from C4○D4
ρ242-22-2-2020002-202i000-2i000000-2i02i00    complex lifted from C4○D4
ρ254-4-4400000-40040000000000000000    orthogonal lifted from C8⋊C22
ρ264-44-4000000-4400000000000000000    orthogonal lifted from 2+ 1+4
ρ274-4-4400000400-40000000000000000    orthogonal lifted from C8⋊C22
ρ2844-4-40000000000000000000220-22000    symplectic lifted from Q8○D8, Schur index 2
ρ2944-4-40000000000000000000-22022000    symplectic lifted from Q8○D8, Schur index 2

Smallest permutation representation of C42.479C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 60 30 23)(2 57 31 24)(3 58 32 21)(4 59 29 22)(5 40 47 27)(6 37 48 28)(7 38 45 25)(8 39 46 26)(9 63 50 42)(10 64 51 43)(11 61 52 44)(12 62 49 41)(13 18 36 53)(14 19 33 54)(15 20 34 55)(16 17 35 56)
(1 35 32 14)(2 34 29 13)(3 33 30 16)(4 36 31 15)(5 49 45 10)(6 52 46 9)(7 51 47 12)(8 50 48 11)(17 21 54 60)(18 24 55 59)(19 23 56 58)(20 22 53 57)(25 43 40 62)(26 42 37 61)(27 41 38 64)(28 44 39 63)
(1 38)(2 26)(3 40)(4 28)(5 58)(6 22)(7 60)(8 24)(9 15)(10 35)(11 13)(12 33)(14 49)(16 51)(17 64)(18 44)(19 62)(20 42)(21 47)(23 45)(25 30)(27 32)(29 37)(31 39)(34 50)(36 52)(41 54)(43 56)(46 57)(48 59)(53 61)(55 63)
(1 35)(2 15)(3 33)(4 13)(5 62)(6 44)(7 64)(8 42)(9 39)(10 25)(11 37)(12 27)(14 32)(16 30)(17 23)(18 59)(19 21)(20 57)(22 53)(24 55)(26 50)(28 52)(29 36)(31 34)(38 51)(40 49)(41 47)(43 45)(46 63)(48 61)(54 58)(56 60)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,60,30,23)(2,57,31,24)(3,58,32,21)(4,59,29,22)(5,40,47,27)(6,37,48,28)(7,38,45,25)(8,39,46,26)(9,63,50,42)(10,64,51,43)(11,61,52,44)(12,62,49,41)(13,18,36,53)(14,19,33,54)(15,20,34,55)(16,17,35,56), (1,35,32,14)(2,34,29,13)(3,33,30,16)(4,36,31,15)(5,49,45,10)(6,52,46,9)(7,51,47,12)(8,50,48,11)(17,21,54,60)(18,24,55,59)(19,23,56,58)(20,22,53,57)(25,43,40,62)(26,42,37,61)(27,41,38,64)(28,44,39,63), (1,38)(2,26)(3,40)(4,28)(5,58)(6,22)(7,60)(8,24)(9,15)(10,35)(11,13)(12,33)(14,49)(16,51)(17,64)(18,44)(19,62)(20,42)(21,47)(23,45)(25,30)(27,32)(29,37)(31,39)(34,50)(36,52)(41,54)(43,56)(46,57)(48,59)(53,61)(55,63), (1,35)(2,15)(3,33)(4,13)(5,62)(6,44)(7,64)(8,42)(9,39)(10,25)(11,37)(12,27)(14,32)(16,30)(17,23)(18,59)(19,21)(20,57)(22,53)(24,55)(26,50)(28,52)(29,36)(31,34)(38,51)(40,49)(41,47)(43,45)(46,63)(48,61)(54,58)(56,60)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,60,30,23)(2,57,31,24)(3,58,32,21)(4,59,29,22)(5,40,47,27)(6,37,48,28)(7,38,45,25)(8,39,46,26)(9,63,50,42)(10,64,51,43)(11,61,52,44)(12,62,49,41)(13,18,36,53)(14,19,33,54)(15,20,34,55)(16,17,35,56), (1,35,32,14)(2,34,29,13)(3,33,30,16)(4,36,31,15)(5,49,45,10)(6,52,46,9)(7,51,47,12)(8,50,48,11)(17,21,54,60)(18,24,55,59)(19,23,56,58)(20,22,53,57)(25,43,40,62)(26,42,37,61)(27,41,38,64)(28,44,39,63), (1,38)(2,26)(3,40)(4,28)(5,58)(6,22)(7,60)(8,24)(9,15)(10,35)(11,13)(12,33)(14,49)(16,51)(17,64)(18,44)(19,62)(20,42)(21,47)(23,45)(25,30)(27,32)(29,37)(31,39)(34,50)(36,52)(41,54)(43,56)(46,57)(48,59)(53,61)(55,63), (1,35)(2,15)(3,33)(4,13)(5,62)(6,44)(7,64)(8,42)(9,39)(10,25)(11,37)(12,27)(14,32)(16,30)(17,23)(18,59)(19,21)(20,57)(22,53)(24,55)(26,50)(28,52)(29,36)(31,34)(38,51)(40,49)(41,47)(43,45)(46,63)(48,61)(54,58)(56,60) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,60,30,23),(2,57,31,24),(3,58,32,21),(4,59,29,22),(5,40,47,27),(6,37,48,28),(7,38,45,25),(8,39,46,26),(9,63,50,42),(10,64,51,43),(11,61,52,44),(12,62,49,41),(13,18,36,53),(14,19,33,54),(15,20,34,55),(16,17,35,56)], [(1,35,32,14),(2,34,29,13),(3,33,30,16),(4,36,31,15),(5,49,45,10),(6,52,46,9),(7,51,47,12),(8,50,48,11),(17,21,54,60),(18,24,55,59),(19,23,56,58),(20,22,53,57),(25,43,40,62),(26,42,37,61),(27,41,38,64),(28,44,39,63)], [(1,38),(2,26),(3,40),(4,28),(5,58),(6,22),(7,60),(8,24),(9,15),(10,35),(11,13),(12,33),(14,49),(16,51),(17,64),(18,44),(19,62),(20,42),(21,47),(23,45),(25,30),(27,32),(29,37),(31,39),(34,50),(36,52),(41,54),(43,56),(46,57),(48,59),(53,61),(55,63)], [(1,35),(2,15),(3,33),(4,13),(5,62),(6,44),(7,64),(8,42),(9,39),(10,25),(11,37),(12,27),(14,32),(16,30),(17,23),(18,59),(19,21),(20,57),(22,53),(24,55),(26,50),(28,52),(29,36),(31,34),(38,51),(40,49),(41,47),(43,45),(46,63),(48,61),(54,58),(56,60)]])

Matrix representation of C42.479C23 in GL6(𝔽17)

1300000
1640000
0000013
000040
0001300
004000
,
100000
010000
000100
0016000
000001
0000160
,
420000
0130000
0001300
0013000
000004
000040
,
100000
010000
0014300
003300
0000143
000033
,
13150000
1640000
000400
0013000
0000013
000040

G:=sub<GL(6,GF(17))| [13,16,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,13,0,0,0,0,4,0,0,0,0,13,0,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[4,0,0,0,0,0,2,13,0,0,0,0,0,0,0,13,0,0,0,0,13,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,14,3,0,0,0,0,3,3,0,0,0,0,0,0,14,3,0,0,0,0,3,3],[13,16,0,0,0,0,15,4,0,0,0,0,0,0,0,13,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,13,0] >;

C42.479C23 in GAP, Magma, Sage, TeX

C_4^2._{479}C_2^3
% in TeX

G:=Group("C4^2.479C2^3");
// GroupNames label

G:=SmallGroup(128,2062);
// by ID

G=gap.SmallGroup(128,2062);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,112,253,758,723,2019,346,248,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=a^2*b^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a*b^2,e*a*e=a^-1*b^2,c*b*c^-1=d*b*d=b^-1,b*e=e*b,d*c*d=b*c,e*c*e=a^2*b^2*c,e*d*e=b^2*d>;
// generators/relations

Export

Character table of C42.479C23 in TeX

׿
×
𝔽